TIPOS DE INJEÇÃO

O ponto mais importante é a formação da mistura mediante a injeção do combustível diretamente antes e durante a auto-ignição e combustão na carga de ar fortemente comprimida. Durante seu desenvolvimento foram encontradas várias soluções que em parte coexistem ainda em nossos dias.

Injeção indireta:

Uma pequena parte da câmara de combustão (antecâmara) é separada da parte principal mediante um estreitamento. O combustível, que em sua totalidade é injetado na antecâmara mediante uma bomba dosificadora a êmbolo com funcionamento de excêntrico, com uma pressão entre 80 e 120 at, dependendo do projeto do motor, inflama-se e queima parcialmente ali; a sobre-pressão instantânea assim formada sopra a mistura inflamada com um efeito de pulverização e turbulência violentas através do "canal de disparo" até a câmara principal rica de ar. As paredes da antecâmara, sobretudo o ponto de impacto do jato entrante, são mantidas com a temperatura mais elevada possível, pois desta forma auxiliam na preparação e ignição do combustível.

Embora tenha a vantagem de produzir menos componentes de gás de escape prejudiciais à saúde, produz maiores perdas de calor, devido a multiplicação de superfícies de permutação, o que resulta em maior consumo específico de combustível e, atualmente, é um processo pouco utilizado nos motores modernos.

Injeção direta:

O combustível é injetado diretamente sobre a cabeça do pistão mediante um bico injetor, com um ou vários pequenos furos (diâmetros de 0,1 a 0,3 mm) direcionados segundo um ângulo apropriado. Funciona com pressões muito elevadas (até 400 at) para conseguir uma pulverização muito fina e uma distribuição adequada do combustível no ar de carburação. O jato único forma uma neblina composta de gotas minúsculas que costuma se inflamar em primeiro lugar na proximidade de entrada. A formação da mistura é acelerada e melhorada quando o ar de carburação executa um movimento rápido em relação à névoa do combustível. Com isto o movimento circular e turbulento do ar se produz de várias formas já com o processo de sucção ou com a compressão. A maioria dos motores modernos utilizam o processo de injeção direta de combustível, em virtude do seu melhor rendimento térmico.

Muitas pesquisas têm sido desenvolvidas sobre o processo da combustão
em motores Diesel. Inicialmente, acreditava-se que ocorria uma explosão
no interior do cilindro, razão pela qual, os motores de combustão interna
eram também chamados de motor a explosão. Por meio de observações,
testes diversos, tentativas, erros e acertos, os componentes do sistema de
injeção vêm sendo aperfeiçoados nos seus desenhos, preservando, no entanto, o que de melhor se alcançou, em termos de resultados com o processo de injeção direta. Recentemente, descobriu-se mais detalhes do próprio processo de combustão e isso, certamente, trará novos desenvolvimentos. Com o auxílio de um equipamento de raios-x de alta velocidade, foi possível registrar os diversos instantes em que a combustão se processa. atÉ ENTÃO todas as observações feitas eram por meio de iluminação estroboscópica, que permitia visualizar uma fração de cada tempo de combustão e, formando uma sequência de imagens, tinha-se uma idéia do processo.

TIPOS DE INJEÇÃO

Processos de injeção direta. a = injeção direta no ar parado (Cummins); b = jato sobre a cabeça do pistão com câmara de mistura térmica (processo MAN-M).

TIPOS DE INJEÇÃO 2

SISTEMA DE INJEÇÃO

Desde a construção do primeiro motor Diesel, o principal problema tem sido o processo de injeção do combustível para a combustão ideal. Os sistemas existentes não sofreram grandes modificações no correr dos anos. As principais alterações, que resultaram em evolução significativa, foram, primeiramente o advento da bomba rotativa em linha, desenvolvida por Robert Bosch em 1927, que permitiu aos motores alcançarem rotações mais elevadas e, conseqüentemente, mais potência.

Depois, no decorrer da década de 80, surgiram os primeiros sistemas de gerenciamento eletrônicos (EDC, de Electronic diesel Control). O desenvolvimento dos sistemas EDC, embora trazendo consideráveis resultados, esbarrava na limitação mecânica dos sistemas em uso, que não podiam prescindir de um meio de comprimir o óleo diesel pela ação de um pistão comandado no instante adequado.

Assim, mantinham-se os componentes básicos dos sistemas de injeção, utilizando-se os recursos eletrônicos para monitoramento e controle, sem possibilidade de intervenções importantes no processo de injeção. O início, duração e término da injeção permaneciam acoplados à posição da árvore de manivelas, uma vez que as bombas injetoras não permitiam variações, por serem acionadas por engrenagens conduzidas pela rotação do motor. Diferentemente dos motores do ciclo Otto, que já utilizavam a injeção eletrônica de combustível e sistema de ignição transistorizado independentes, os motores diesel ainda esperavam por novas tecnologias.

Em 1997, a Alfa Romeu lançou o seu modelo 156 equipado com um motor Diesel dotado de um sistema de injeção revolucionário, que ela denominou de JTD. Tal sistema, aumentava a potência e o torque com redução do consumo e, por conseqüência, os níveis de emissões e abriu novas perspectivas para o futuro dos motores Diesel. Posteriormente, os direitos de fabricação deste sistema foram cedidos à Robert Bosch, que começou a equipar motores para a Mercedes Benz, BMW, Audi, Peugeot e Citroën (estes últimos denominam o sistema de HDI). Em 2003 chegará ao mercado um modelo da Fiat. A Ford está testando um modelo Focus e a Volkswagen já apresentou um Passat equipado com o novo sistema. No segmento de motores mais pesados, as fábricas Mercedes, Scania e Volvo já anunciaram os lançamentos dos novos motores equipados com este sistema, que ganhou a denominação de COMMON RAIL.

Segundo a Robert Bosch do Brasil:

O Sistema Common Rail Bosch é um moderno e inovador sistema de injeção diesel. Ele foi desenvolvido para atender à atual demanda do mercado em relação à diminuição do consumo de combustível, da emissão de poluentes e maior rendimento do motor exigidos pelo mercado. Para isto são necessárias altas pressões de injeção, curvas de injeção exatas e dosagem extremamente precisa do volume do combustível.

Com a introdução da primeira bomba injetora em linha fabricada em série no ano de 1927, estavam criadas as condições para o emprego do motor Diesel de alta rotação em veículos automotivos. O emprego da bomba injetora em linha ainda hoje está em diversos veículos utilitários e motores estacionários, chegando até a locomotivas e navios com pressões de injeção para motores de até cerca de 160 kw por cilindro. Os diferentes requisitos para a utilização dos motores diesel levaram ao desenvolvimento de diversos sistemas de injeção, adequados às respectivas exigências.

O sistema de injeção de pressão modulada "Common Rail" para motores de injeção direta abre perspectivas completamente novas:

• Ampla área de aplicação (para veículos de passeio e utilitários leves com potência de até 30 kw / cilindro, para utilitários pesados chegando até a locomotivas e navios com potência de até 200 kw / cilindro);

• Alta pressão de injeção de até cerca de 1400 bar;

• Início de injeção variável;

• Possibilidade de pré-injeção, injeção principal e pós-injeção;

• Volume de injeção, pressão no "Rail" e início da injeção adaptados a cada regime de funcionamento;

• Pequenas tolerâncias e alta precisão durante toda a vida útil;

O sistema de injeção de pressão modulada "Common Rail", produção de pressão e injeção são acoplados. A pressão de injeção é produzida independente da rotação do motor e do volume de injeção e está no "Rail" (acumulador de combustível de alta pressão) pronta para a injeção.

Momento e qualidade de injeção são calculados na unidade de comando eletrônica e transportados pelo injetor (unidade de injeção) em cada cilindro do motor através de uma válvula magnética ativada. Com o injetor e a alta pressão sempre iminente, obtém-se uma curva de injeção muito precisa.

Com a ajuda dos sensores a unidade de comando pode captar a condição atual de funcionamento do motor e do veículo em geral. Ela processa os sinais gerados pelos sensores e recebidos através de cabos de dados. Com as informações obtidas ela tem condição de exercer comando e regulagem sobre o veículo e, principalmente, sobre o motor.

O sensor de rotação do eixo de comando, determina, com o auxílio do efeito "Hall", se o cilindro se encontra no PMS da combustão ou da troca de gás. Um potenciômetro na função de sensor do pedal do acelerador, informa através de um sinal elétrico à unidade de comando, com que força o condutor acionou o pedal (aceleração).

O medidor de massa de ar informa á unidade de comando qual a massa de ar atualmente disponível para assegurar uma combustão possivelmente completa. Havendo um turbocompressor, atua ainda o sensor que registra a pressão de carga. Com base nos valores dos sensores de temperatura do agente de refrigeração e de temperatura do ar. De acordo com o veículos são conduzidos ainda outros sensores e cabos de dados até a unidade de comando para fazer cumprir as crescentes exigências de segurança e de conforto.

Esta nova tecnologia ainda não está disponível para os motores utilizados nos grupos geradores. Tudo indica que brevemente também os motores estacionários e industriais serão incrementados com novos desenvolvimentos tecnológicos.

Um indicativo importante do sucesso do sistema, por exemplo, é o anúncio da Delphi diesel de investimento de 2 bilhões de dólares no desenvolvimento das suas linhas de produção para fabricar componentes Common Rail.

Com o advento destas inovações, muda sensivelmente o perfil do profissional de manutenção de motores, que deverá adquirir conhecimentos também de sistemas digitais e da utilização de ferramentas computadorizadas para diagnóstico de falhas e correção de defeitos.

COMPONENTES DO SISTEMA DE INJEÇÃO

Bomba injetora

A injeção do combustível diesel é controlada por uma bomba de pistões responsável pela pressão e dosagem para cada cilindro, nos tempos corretos. Na maioria dos motores Diesel, utiliza-se uma bomba em linha dotada de um pistão para cada cilindro e acionada por uma árvore de cames que impulsiona o combustível quando o êmbolo motor (pistão) atinge o ponto de início de injeção, no final do tempo de compressão. Alguns motores utilizam bombas individuais para cada cilindro e há outros que utilizam uma bomba de pressão e vazão variáveis, fazendo a injeção diretamente pelo bico injetor acionado pela árvore de comando de válvulas. Há ainda aqueles que utilizam bombas rotativas, que distribuem o combustível para os cilindros num processo semelhante ao do distribuidor de corrente para as velas utilizado nos motores de automóveis.